pcl自动的ml文件夹内存在svm分类器,但是遗憾的是,我并不能掌握应用方法,因此借用opencv的cv空间进行了点云坐标的转移,使用opencv的svm功能进行调试。现在是最开始的版本
仅仅使用了高程数据,并且没有做归一化等操作
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <opencv2/opencv.hpp>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/visualization/point_cloud_color_handlers.h>
#include <boost/thread/thread.hpp>
#include <boost/thread/thread_time.hpp>
int main() {
// 读取初始点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PCDReader reader;
reader.read("svmtest.pcd", *cloud);
cout << "初始点云读取完成" << endl;
// 读取带标签的点云
pcl::PointCloud<pcl::PointXYZL>::Ptr labeledCloud(new pcl::PointCloud<pcl::PointXYZL>);
reader.read("svmlearn_xyzl.pcd", *labeledCloud);
cout << "标签点云读取完成" << endl;
// 准备训练数据和标签
cv::Mat trainingData(labeledCloud->size(), 3, CV_32FC1);
cv::Mat labels(labeledCloud->size(), 1, CV_32SC1);
for (size_t i = 0; i < labeledCloud->size(); ++i) {
trainingData.at<float>(i, 0) = labeledCloud->points[i].x;
trainingData.at<float>(i, 1) = labeledCloud->points[i].y;
trainingData.at<float>(i, 2) = labeledCloud->points[i].z;
// 根据点的标签设置标签数据
labels.at<int>(i, 0) = labeledCloud->points[i].label;
}
cout << "根据点的标签设置标签数据完成" << endl;
// 创建并训练SVM分类器
cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create();
svm->setType(cv::ml::SVM::C_SVC);
svm->setKernel(cv::ml::SVM::RBF);
svm->setC(10);
svm->setGamma(0.001);
svm->train(trainingData, cv::ml::ROW_SAMPLE, labels);
cout << "创建并训练SVM分类器完成,正在开始对点云进行分类" << endl;
// 对初始点云进行分类
cv::Mat testData(cloud->size(), 3, CV_32FC1);
for (size_t i = 0; i < cloud->size(); ++i)
{
testData.at<float>(i, 0) = cloud->points[i].x;
testData.at<float>(i, 1) = cloud->points[i].y;
testData.at<float>(i, 2) = cloud->points[i].z;
}
cv::Mat predictedLabels;
svm->predict(testData, predictedLabels);
cout << "正在将分类结果添加到点云中" << endl;
// 将分类结果添加到点云中
pcl::PointCloud<pcl::PointXYZL>::Ptr classifiedCloud(new pcl::PointCloud<pcl::PointXYZL>);
classifiedCloud->resize(cloud->size());
for (size_t i = 0; i < cloud->size(); ++i) {
classifiedCloud->points[i].x = cloud->points[i].x;
classifiedCloud->points[i].y = cloud->points[i].y;
classifiedCloud->points[i].z = cloud->points[i].z;
// 修正标签值(假设标签是 0 或 1)
classifiedCloud->points[i].label = static_cast<int>(predictedLabels.at<float>(i, 0)) + 1;
}
pcl::PCDWriter writer;
writer.write("lable.pcd", *classifiedCloud);
cout << "lable.pcd已完成储存,请查看" << endl;
//----------------------------根据分类标签可视化-----------------------------
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));
pcl::visualization::PointCloudColorHandlerGenericField<pcl::PointXYZL>fildColor(classifiedCloud, "label");
viewer->setBackgroundColor(0, 0, 0);
viewer->setWindowName("点云按分类标签显示");
viewer->addText("Point clouds are shown by label", 50, 50, 0, 1, 0, "v1_text");
viewer->addPointCloud<pcl::PointXYZL>(classifiedCloud, fildColor, "sample cloud");
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "sample cloud");
while (!viewer->wasStopped())
{
viewer->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
return 0;
}
更多【计算机视觉-pcl-2 pcl结合opencv做svm分类(高程数据)】相关视频教程:www.yxfzedu.com